二分法查找
当数据量很大适宜采用该方法。采用二分法查找时,数据需是有序不重复的。 基本思想:假设数据是按升序排序的,对于给定值 x,从序列的中间位置开始比较,如果当前位置值等于 x,则查找成功;若 x 小于当前位置值,则在数列的前半段中查找;若 x 大于当前位置值则在数列的后半段中继续查找,直到找到为止。
假设有一个数组 { 12, 23, 34, 45, 56, 67, 77, 89, 90 },现要求采用二分法找出指定的数值并将其在数组的索引返回,如果没有找到则返回 -1。代码如下:
1 | public class Search { |
二分法查找的时间复杂度为O(logN)。
快速排序
算法思想:基于分治的思想,是冒泡排序的改进型。首先在数组中选择一个基准点(该基准点的选取可能影响快速排序的效率,后面讲解选取的方法),然后分别从数组的两端扫描数组,设两个指示标志(lo指向起始位置,hi指向末尾),首先从后半部分开始,如果发现有元素比该基准点的值小,就交换lo和hi位置的值,然后从前半部分开始扫秒,发现有元素大于基准点的值,就交换lo和hi位置的值,如此往复循环,直到lo>=hi,然后把基准点的值放到hi这个位置。一次排序就完成了。以后采用递归的方式分别对前半部分和后半部分排序,当前半部分和后半部分均有序时该数组就自然有序了。
1 | public static int partition(int []array,int lo,int hi){ |
快速排序的时间复杂度为O(NlogN)。